POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

COURSE DESCRIPTION CARD - SYLLABUS

Course name

Material processing technologies [S2IMat1-MMiTS>TPM]

dr hab. inż. Paweł Popielarski prof. PP pawel.popielarski@put.poznan.pl						
Coordinators		Lecturers				
Number of credit points 2,00						
Tutorials 0	Projects/seminars 0	5				
Lecture 15	Laboratory classe		Other 0			
Number of hours						
Form of study full-time		Requirements elective				
Level of study second-cycle		Course offered ir Polish	1			
Area of study (specialization) Metal and Plastics Materials		Profile of study general academi	с			
Course Field of study Materials Engineering		Year/Semester 2/3				

Prerequisites

Student has basic knowledge of physics and materials science (including heat transfer, flows, stresses, materials science, crystallization, phase transformations), CAD geometry systems and the basics of manufacturing engineering. Has also skills in Acquiring information from literature survey and internet, is able to use the acquired knowledge to choose a technology selection strategy and understand the necessity to learn, taking new knowledge and collaboration in a workgroup.

Course objective

Learning about selected non-waste manufacturing technologies used in material technologies

Course-related learning outcomes

none

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows: Lecture:

Written exam at the end of the semester (credit if at least 50.1% of correct answers are obtained). Up to 50.0% - ndst, from 50.1% to 60.0% - dst, from 60.1% to 70.0% - dst +, from 70.1 to 80.0 - db, from 80.1% up to 90.0% - db +, from 90.1% to 100% - bdb. Laboratories:

Participation in laboratory classes. Providing an oral or written answer to the teacher, graded on a scale from 2 to 5. Final grade on a grade scale from 2 to 5, the average of the obtained laboratory grades (all must be positively assessed, above 2)

Programme content

Application of the Rapid Prototyping method in foundry. Place of computer support in the design of casting technology. Modeling and simulation methods of complex foundry processes. Computer simulation of the casting process. Thermophysical databases in simulation systems. Characteristics of selected special casting manufacturing methods Application examples. Modern molding methods and production lines. Manufacture of precision castings from models made by Rapid Prototyping. Pouring molds under the action of centrifugal force or vacuum. Computer simulation of the casting process in Magmasoft. Optimization of the casting supply conditions using the simulation of the casting process.

Course topics

Selected chipfree manufacturing technologies used in material technologies

Teaching methods

Lecture: multimedia presentation illustrated with examples given on the blackboard, solving problems. Laboratory exercises: performing experiments, solving problems, discussion, working in a team.

Bibliography

1. M. Perzyk i inni, Odlewnictwo. WNT, Warszawa 2004

2. Inżynieria produkcji, Karpiński T., WNT, Warszawa, 2004

3. Poradnik Odlewnika, Sobczak J., Wyd. Stowarzyszenia Technicznego Odlewników Polskich, Tom 1, Kraków 2013.

4. Poradnik Odlewnika, Sobczak J., Wyd. Stowarzyszenia Technicznego Odlewników Polskich, Tom 1, Kraków 2013.

5. D.M. Stefanescu, Science and Enginnering of Casting Solidification. Springer Verlag.2009

Breakdown of average student's workload

	Hours	ECTS
Total workload	0	0,00
Classes requiring direct contact with the teacher	0	0,00
Student's own work (literature studies, preparation for laboratory classes/ tutorials, preparation for tests/exam, project preparation)	0	0,00